

Warren Hsing

Presentation to: NIF and JLF User Group Meeting

February 11, 2014

LLNL-PRES-65019

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

An integrated suite of capabilities to perform an experiment is termed the experimental "platform"

Experimental Platform: "End-station"

Targets

Diagnostics

Radiation Transport Target

Facility Integration

Laser

Data Analysis

This talk will focus on the regimes and potential physics areas that can be explored using existing platforms

- The use of existing platforms provides the opportunity to acquire data more readily than developing new platforms
- This strategy is consistent with mini-campaigns more shots, more data
- Does not preclude new platforms a user facility needs to be able to develop new platforms for users if required
 - A balance is needed between acquiring data on existing platforms and development of new platforms

Providing more opportunities for data is vital for Fundamental Science on NIF

By using an experimental platform that has already been commissioned, physics data can be acquired more readily

We have a large number of platforms that have been commissioned by ICF or HEDSS

We have ~ 54 platforms currently used for experiments

We continue to commission new experimental platforms

Implosions reach high temperature and/or density conditions

Many different direct and indirect drive capsules have been fielded

Implosions are potential platforms for a multitude of physics

- Charged particle stopping power
- Non-equilibrium atomic physics
- Electron-ion equilibration
- Moderately coupled plasmas
- Mix
- Kinetic effects

A suite of ~ 50 diagnostics are available

Hot Spot			
T _{HS}	3–4 keV	NTOF20, hGXI, ARIANE,DIXI	
<r<sub>HS></r<sub>	20–30 μm	hGXI, ARIANE, DIXI, NI	
Y _n	10 ^{13–15}	NToF, NAD, MRS, CR39	
t _{burn,bang}	100–200 ps ~20 ns	hGXI, SPBT, NToF4BT, GRH, SPIDER, ARIANE	
mix	30%	hGXI, ARIANE,DIXI, HXRS RAGS	

Cold Fuel			
<ρ R >	>1 g/cm ²	NToF, WRF MRS, RAGS, ARC, NI	
Δρ R (θ)	<0.2 g/cm ²	MRS, NToF, NI	
$\Delta R_{mix} / \Delta R_{shell}$	<0.25	hGXI, DIXI	

New capabilities to perform nuclear physics experiments have been developed

Neutrons from DT reactions can be used for nuclear physics

Quantitative cross section data has been acquired

A gaseous radchem diagnostic has just been commissioned

- Potential experiments with nuclear reactions in a plasma
- Excited state nuclear physics
- Screening effects

Shock and ramp compression platforms allow the study of material physics: EOS, material properties, structure

Keyhole and planar experiments reach ~100 MBars

~ 70 Mbars achieved in Carbon

Convergent experiments reached ~ 700MBars (Gbar)

Conditions reached are comparable to planetary interiors

- Conditions of planetary interiors
- EOS
- Phase
- Material strength
- Pressure ionization at high density

Planar and convergent platforms have been developed for hydrodynamics experiments

A new double sided drive platform has been developed by LANL

• KH, counter-propagating RM planar

Radiation physics and LPI platforms

Supersonic radiation transport platform

 Radiation transport in interstellar media

Number of mean free paths / τ

Volumetric, isotropic multi-keV X-ray sources

- Atomic physics
- LPI

Viewfactor platform

Hohlraum physics

The list of available platforms have been tabulated and are available with references

Indirect drive implosions	Direct drive implosions	Shock timing and equation of	Horizontal axis radiography
		state	
DT	PDD	Key	1DConA
Symcap	DIME	DT Keyhole	2DConA
CSym	ExPsh	Keyhole: 2axis	2D ConA THD
Warm SymCap		Keyhole: 3axis, m mode	ConAW
CDMix		Keyhole: 3axis, p mode	ConAW: Hifoot
Rugby		Keyhole: DT layer	ConAW: Gbar
ID Exp Push		Crystal Ball	Toto Radiography
		Keyhole: HGR	HGR
		Keyhole: Planar Ablator	TaRT
		EOS	AbIRT
		Diffraction Drive	
		Strength Dr	

Vertical axis radiography	Half hohlraum	X-ray conversion	Laser plasma interactions
2DConA	AbIRT	XRSD	Gas pipe
AbIRT	Fanbolt	X-ray Source	Hohlraum Energetics
	Menkar	MDAexposure	Reemit
	Pleiades	BL	ViewF
	RadT	Backlighter: 2D	Quart
	RTCal	Au Ball: Flat Field	
	RTStrk	Au Disk	
	Shktub		

Posters in each area with additional details are available in this meeting

Summary

- The use of existing platforms provides the opportunity to acquire data more readily than developing new platforms
- This strategy is consistent with mini-campaigns more shots, more data
- Does not preclude new platforms a user facility needs to be able to develop new platforms for users if required
 - A balance is needed between acquiring data on existing platforms and development of new platforms

Providing more opportunities for data is vital for Fundamental Science on NIF

Identification of key scientific experiments can drive new capabilities required

Typical lead times prior to a NIF experiment				
Capability	Identical to existing platform	Small modification to existing platform	New capability	
Targets	1 – 6 months	6 months – 1 year	> 1 year	
Laser drive	~ 1 month	1 – 6 months	> 6 months	
Diagnostics	~ 1 – 3 months	3 – 6 months	> 6 months	
Data analysis	Exists	1 – 3 months	> 3 months	